CONGENITAL OCULAR MOTOR APRAXIA

S. GONÇALVES CARRASQUINHO¹, S. TEIXEIRA¹, A. CADETE², M. BERNARDO¹, P. PÊGO¹, I. PRIETO¹

¹Paediatric Ophthalmology Department
²Physical Medicine and Rehabilitation Department, Hospital Fernando Fonseca, Lisboa - Portugal

INTRODUCTION

Congenital ocular motor apraxia, described in 1952 by Professor David Cogan, is characterized by defective or absent voluntary and optically induced horizontal saccadic movements. Jerky head movements or thrusts on attempted lateral gaze are a compensatory sign. Most affected children have delayed motor and speech development. Cases associated with systemic diseases, neurologic maldevelopment, metabolic deficits, and chromosomal abnormalities have been described.

The vertical saccades, pursuit, and random eye movements are normal. However, cases of impairment of vertical saccadic movements have been described. The fast phases of optokinetic and vestibular evoked nystagmus are absent (2, 3).

With advancing age, the head thrusts become less prominent and tend to be replaced by blinking and to be seen only in tiredness and anxiety. Horizontal saccadic movements may emerge, albeit abnormal (2, 3).

Although congenital ocular motor apraxia has been described for more than 50 years, the etiology and physiopathology remain unresolved. The syndrome is related with impairment of the supranuclear control system of saccadic movements (2-5).

Both autosomal recessive and dominant inheritance patterns have been described (2-5). Most affected patients present delayed psychomotor and speech development. Congenital ocular motor apraxia is usually bilateral, but some authors have described unilateral and asymmetric cases (2-5).

The clinical case was presented at the 32nd meeting of the European Paediatric Ophthalmological Society as a free paper (abstract T4); October 6, 2006.
may also be associated with Systemic Diseases – congenital hepatic fibrosis (COACH syndrome), neurofibromatosis – CNS Maldevelopment – cerebellar vermis hypoplasia or partial agenesis, dysgenesis of the corpus callosum, cerebellar hypoplasia, gray matter heterotopia, pachygyria – Metabolic Deficits – partial deficiency of NADH dehydrogenase, partial deficiency of pyruvate carboxylase – and Chromosomal Abnormalities – deletions in the nephronophthisis gene (NPHP 1), duplications of band p13 of chromosome 5 (2, 3).

The differential diagnosis includes visual acuity deficits, other ocular motor diseases, cephalic movement disorders, acquired ocular motor apraxia (e.g., posterior fossa lesions, bilateral frontoparietal lesions), and syndromes in which ocular motor apraxia is an ocular sign – Joubert syndrome, ataxia-telangiectasia, ataxia-ocular motor apraxia type 1, ataxia-ocular motor apraxia type 2, and Gaucher disease type 3 (2, 3). Nystagmography, CNS magnetic resonance imaging (MRI), electrophysiologic studies, and metabolic study (lactate, pyruvate, ammonia, amino acids, organic acids, AFP, albumin, and immunoglobulin) assist in the diagnosis, the differential diagnosis, and the screening of associated diseases (2, 3).

Case report

A 15-month-old boy was referred to us for evaluation of abnormal eye and head movements. Pregnancy and birth were normal. In the neonatal period he had neutropenia which required treatment with granulocyte colony stimulating factor in the neonatal intensive care unit. There was no known family history of relevant diseases. The parents were a young and non-consanguineous Senegalese couple.

With the head fixed, the patient was unable to make normal horizontal eye movements, but vertical movements were unaffected. With the head free and when a visual stimulus was presented in the lateral peripheral field of view, the child showed the sequence of movements characteristic of congenital ocular motor apraxia. The vestibulo-ocular reflex was normal. The fast phases of optokinetic nystagmus were absent. The remaining ophthalmologic evaluation was normal.

The pediatrics and neurologic evaluations were unremarkable, except for wide-based gait. The development evaluation with The Schedule of Growing Skills II showed normal gross motor skills, but a delay inferior to two standard deviations in the other items.

The CNS MRI identified bilateral and symmetric lesions at the pons, between the abducens and facial nerves nuclei and the medial longitudinal fasciculus (Fig. 1). The metabolic study was normal.

The patient has been submitted to a multidisciplinary follow-up. In our last evaluation (at 35 months old), the ocular motor apraxia was improved and the child demonstrated a better control of head thrusts. The psychotic motor and speech delay. Presently, the patient is attending a school with special education.
CONGENITAL OCULAR MOTOR APRAXIA

DISCUSSION

Congenital ocular motor apraxia is an uncommon disorder of ocular motility. Many authors defend that this disease is infrequently unrecognized and little known. Only about 50 case reports have been published. The etiology and physiopathology of the disease remain unknown. Although congenital ocular motor apraxia has been related with impairment of the supranuclear control system of saccadic movements, the site of the lesion has not been established. The neurologic control of horizontal saccades is complex and incompletely understood. The supranuclear center for horizontal saccadic movements is the paramedian pontine reticular formation (PPRF). The afferent connections to the PPRF are from the frontal eye fields, the vestibular nuclei, the superior colliculi, the cerebellum, and the perihypoglossal nuclei. Its major efferent projections are to the ipsilateral abducens nucleus. Secondary efferent projections are to the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF). Horizontal eye movements can also be affected by the posterior parietal lobe, the supplementary motor cortex, the thalamus, and the basal ganglia. Interneurons connect the ocular motor nuclei via the MLF and coordinate eye movements at a peripheral anatomic level. It may be assumed that a dysfunction of frontal eye fields (Brodmann area 8) and of the frontomesencephalic pathway is responsible for this disease (2-5). Samson et al advocated that congenital ocular motor apraxia only represents a maturation delay of the supranuclear control system of saccades (4). Harris et al suggested that congenital saccade initiation failure (c-SIF) is a more specific term for this disease, because this implicates a basic saccadic rather than an apraxic disorder (5).

The impairment of horizontal saccades and the head thrusts presented by our patient were typical of congenital ocular motor apraxia. The development evaluation showed an associated psychomotor and speech delay. However, the interpretation of this evaluation is not linear. The parents are from Senegal and the child is being brought up according to the Senegalese customs. This background obviously also influences his psychomotor and speech development. The clinical meaning and the relevance of the anatomic localization for the etiology of congenital ocular motor apraxia of the CNS lesions found in the MRI are uncertain. Description of such neuroradiologic findings was not detected in the reviewed literature. None of the structural abnormalities of CNS characteristic of congenital ocular motor apraxia were identified in MRI. The associated diseases and the developmental delay promote cognitive impairment, reading and learning difficulties (2, 3). Therefore, ophthalmologists should be aware of congenital ocular motor apraxia’s associated conditions, in order to grant the patients the multidisciplinary assistance they often require, including physiotherapy, speech therapy, and special education.

The authors report no financial support or propriety interest in this article.

REFERENCES
