Browsing by Author "Sequeiros, J"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Mutational mechanism for DAB1 (ATTTC)n insertion in SCA37: ATTTT repeat lengthening and nucleotide substitution.Publication . Loureiro, JR; Oliveira, C; Mota, C; Castro, AF; Costa, C; Loureiro, J; Coutinho, P; Martins, S; Sequeiros, J; Silveira, IDynamic mutations by microsatellite instability are the molecular basis of a growing number of neuromuscular and neurodegenerative diseases. Repetitive stretches in the human genome may drive pathogenicity, either by expansion above a given threshold, or by insertion of abnormal tracts in nonpathogenic polymorphic repetitive regions, as is the case in spinocerebellar ataxia type 37 (SCA37). We have recently established that this neurodegenerative disease is caused by an (ATTTC)n insertion within an (ATTTT)n in a noncoding region of DAB1. We now investigated the mutational mechanism that originated the (ATTTC)n insertion within an ancestral (ATTTT)n . Approximately 3% of nonpathogenic (ATTTT)n alleles are interspersed by AT-rich motifs, contrarily to mutant alleles that are composed of pure (ATTTT)n and (ATTTC)n stretches. Haplotype studies in unaffected chromosomes suggested that the primary mutational mechanism, leading to the (ATTTC)n insertion, was likely one or more T>C substitutions in an (ATTTT)n pure allele of approximately 200 repeats. Then, the (ATTTC)n expanded in size, originating a deleterious allele in DAB1 that leads to SCA37. This is likely the mutational mechanism in three similar (TTTCA)n insertions responsible for familial myoclonic epilepsy. Because (ATTTT)n tracts are frequent in the human genome, many loci could be at risk for this mutational process.
- Nonsense mutation in TITF1 in a Portuguese family with benign hereditary choreaPublication . Costa, MC; Costa, C; Silva, A; Evangelista, P; Santos, L; Ferro, A; Sequeiros, J; Maciel, PBenign hereditary chorea (BHC) is an autosomaldominant disorder of early onset characterized by a slowly progressing or nonprogressing chorea, without cognitive decline or other progressive neurologic dysfunction, but also by the existence of heterogeneity of the clinical presentation within and among families. The genetic cause of BHC is the presence of either point mutations or deletions in the thyroid transcription factor 1 gene (TITF1). We studied a Portuguese BHC family composed of two probands: a mother and her only son. The patients were identified in a neurology out-patient clinic showing mainly involuntary choreiform movements since childhood, myoclonic jerks, falls, and dysarthria. We performed magnetic resonance imaging (MRI), electroencephalogram (EEG), nerve conduction studies, thyroid ultrasound scan, biochemical thyroid tests, and electrocardiogram (ECG). We excluded Huntington disease by appropriate genetic testing and sequenced the entire TITF1 gene for both patients. The patients showed MRI alterations: (1) in the mother, abnormal hyperintense pallida and cortical cerebral/cerebellar atrophy; and (2) in the son, small hyperintense foci in the cerebellum and subtle enlargement of the fourth ventricle. Sequence analysis of the TITF1 gene in these patients revealed the presence of a heterozygous C > T substitution at nucleotide 745, leading to the replacement of a glutamine at position 249 for a premature stop codon. A previously undescribed nonsense mutation in the TITF1 gene was identified as being the genetic cause of BHC in this family.
- A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14Publication . Alonso, I; Costa, C; Gomes, A; Ferro, A; Seixas, A; Silva, S; Cruz, V; Coutinho, P; Sequeiros, J; Silveira, ISpinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disorder, first described in a Japanese family, showing linkage to chromosome 19q13.4-qter. Recently, mutations have been identified in the PRKCG gene in families with SCA14. The PRKCG gene encodes the protein kinase Cgamma (PKCgamma), a member of a serine/threonine kinase family involved in signal transduction important for several cellular processes, including cell proliferation and synaptic transmission. To identify the disease-causing mutation in a large group of ataxia patients, we searched for mutations in the PRKCG gene. We ascertained 366 unrelated patients with spinocerebellar ataxia, either pure or with associated features such as epilepsy, mental retardation, seizures, paraplegia, and tremor. A C-to-G transversion in exon 4, resulting in a histidine-to-glutamine change at codon 101 of the PKCgamma protein, was identified in patients from a family with slowly progressive pure cerebellar ataxia. Functional studies performed in HEK293 cells transfected with normal or mutant construct showed that this mutation affects PKCgamma stability or solubility, verified by time-dependent decreased protein levels in cell culture. In conclusion, the H101Q mutation causes slowly progressive uncomplicated ataxia by interfering with PKCgamma stability or solubility, which consequently may cause in either case a decrease in the overall PKCgamma-dependent phosphorylation.