Browsing by Author "Soto, K, et al."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Clinicopathologic predictors of renal outcomes in light chain cast nephropathy: a multicenter retrospective studyPublication . Royal, V; Leung, N; Troyanov, S; Nasr, Sh; Écotière, L; LeBlanc, R; Adam, BA; Angioi, A; Alexander, MP; Asunis, AM; Barreca, A; Bianco, PC; Cohen, C; Drosou, ME; Fatima, H; Fenoglio, R; Gougeon, F; Goujon, JM; Herrera, GA; Knebelmann, B; Lepori, N; Maletta, F; Manso, RT; Motwani, SS; Pani, A; Rabant, M; Rennke, HG; Rocatello, D; Rosenblum, F; Sanders, PW; Santos, A; Soto, K, et al.Light chain cast nephropathy (LCCN) in multiple myeloma often leads to severe and poorly reversible acute kidney injury. Severe renal impairment influences the allocation of chemotherapy and its tolerability; it also affects patient survival. Whether renal biopsy findings add to the clinical assessment in predicting renal and patient outcomes in LCCN is uncertain. We retrospectively reviewed clinical presentation, chemotherapy regimens, hematologic response, and renal and patient outcomes in 178 patients with biopsy-proven LCCN from 10 centers in Europe and North America. A detailed pathology review, including assessment of the extent of cast formation, was performed to study correlations with initial presentation and outcomes. Patients presented with a mean estimated glomerular filtration rate (eGFR) of 13 ± 11 mL/min/1.73 m2, and 82% had stage 3 acute kidney injury. The mean number of casts was 3.2/mm2 in the cortex. Tubulointerstitial lesions were frequent: acute tubular injury (94%), tubulitis (82%), tubular rupture (62%), giant cell reaction (60%), and cortical and medullary inflammation (95% and 75%, respectively). Medullary inflammation, giant cell reaction, and the extent of cast formation correlated with eGFR value at LCCN diagnosis. During a median follow-up of 22 months, mean eGFR increased to 43 ± 30 mL/min/1.73 m2. Age, β2-microglobulin, best hematologic response, number of cortical casts per square millimeter, and degree of interstitial fibrosis/tubular atrophy (IFTA) were independently associated with a higher eGFR during follow-up. This eGFR value correlated with overall survival, independently of the hematologic response. This study shows that extent of cast formation and IFTA in LCCN predicts the quality of renal response, which, in turn, is associated with overall survival.
- High resolution mass spectrometry-based methodologies for identification of Etravirine bioactivation to reactive metabolites: In vitro and in vivo approaches.Publication . Godinho, A; Martins, I; Nunes, J; Charneira, C; Grilo, J; Silva, D; Pereira, S; Soto, K, et al.Drug bioactivation to reactive metabolites capable of covalent adduct formation with bionucleophiles is a major cause of drug-induced adverse reactions. Therefore, elucidation of reactive metabolites is essential to unravel the toxicity mechanisms induced by drugs and thereby identify patient subgroups at higher risk. Etravirine (ETR) was the first second-generation Non-Nucleoside Reverse Transcriptase Inhibitor (NNRTI) to be approved, as a therapeutic option for HIV-infected patients who developed resistance to the first-generation NNRTIs. Additionally, ETR came into market aiming to overcome some adverse effects associated with the previously used efavirenz (neurotoxicity) and nevirapine (hepatotoxicity) therapies. Nonetheless, post-marketing reports of severe ETR-induced skin rash and hypersensitivity reactions have prompted the U.S. FDA to issue a safety alert on ETR. Taking into consideration that ETR usage may increase in the near future, due to the possible use of the drug for coinfection with malaria and HIV, the development of reliable prognostic tools for early risk/benefit estimations is urgent. In the current study, high resolution mass spectrometry-based methodologies were integrated with MS3 experiments for the identification of reactive ETR metabolites/adducts: 1) in vitro incubation of the drug with human and rat liver S9 fractions in the presence of Phase I and II co-factors, including glutathione, as a trapping bionucleophile; and 2) in vivo, using urine samples from HIV-infected patients on ETR therapy. We obtained evidence for multiple bioactivation pathways leading to the formation of covalent adducts with glutathione and N-acetyl-L-cysteine. These results suggest that similar reactions may occur with cysteine residues of proteins, supporting a role for ETR bioactivation in the onset of the toxic effects elicited by the drug. Additionally, ETR metabolites stemming from amine oxidation, with potential toxicological significance, were identified in vitro and in vivo. Also noteworthy is the fact that new metabolic conjugation pathways of glucuronide metabolites were demonstrated for the first time, raising questions about their potential toxicological implications. In conclusion, these results represent not only a contribution towards the elucidation of new metabolic pathways of drugs in general but also an important step towards the elucidation of potentially toxic ETR pathways, whose understanding may be crucial for reliable risk/benefit estimations of ETR-based regimens.
- Mercapturate Pathway in the Tubulocentric Perspective of Diabetic Kidney DiseasePublication . Gonçalves-Dias, C; Morello, J; Correia, MJ; Coelho, N; Antunes, A; Macedo, MP; Monteiro, E; Soto, K, et al.BACKGROUND: The recent growing evidence that the proximal tubule underlies the early pathogenesis of diabetic kidney disease (DKD) is unveiling novel and promising perspectives. This pathophysiological concept links tubulointerstitial oxidative stress, inflammation, hypoxia, and fibrosis with the progression of DKD. In this new angle for DKD, the prevailing molecular mechanisms on proximal tubular cells emerge as an innovative opportunity for prevention and management of DKD as well as to improve diabetic dysmetabolism. SUMMARY: The mercapturate pathway (MAP) is a classical metabolic detoxification route for xenobiotics that is emerging as an integrative circuitry detrimental to resolve tubular inflammation caused by endogenous electrophilic species. Herein we review why and how it might underlie DKD. Key Messages: MAP is a hallmark of proximal tubular cell function, and cysteine-S-conjugates might represent targets for early intervention in DKD. Moreover, the biomonitoring of urinary mercapturates from metabolic inflammation products might be relevant for the implementation of preventive/management strategies in DKD.