Browsing by Author "Silveira, I"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Mutational mechanism for DAB1 (ATTTC)n insertion in SCA37: ATTTT repeat lengthening and nucleotide substitution.Publication . Loureiro, JR; Oliveira, C; Mota, C; Castro, AF; Costa, C; Loureiro, J; Coutinho, P; Martins, S; Sequeiros, J; Silveira, IDynamic mutations by microsatellite instability are the molecular basis of a growing number of neuromuscular and neurodegenerative diseases. Repetitive stretches in the human genome may drive pathogenicity, either by expansion above a given threshold, or by insertion of abnormal tracts in nonpathogenic polymorphic repetitive regions, as is the case in spinocerebellar ataxia type 37 (SCA37). We have recently established that this neurodegenerative disease is caused by an (ATTTC)n insertion within an (ATTTT)n in a noncoding region of DAB1. We now investigated the mutational mechanism that originated the (ATTTC)n insertion within an ancestral (ATTTT)n . Approximately 3% of nonpathogenic (ATTTT)n alleles are interspersed by AT-rich motifs, contrarily to mutant alleles that are composed of pure (ATTTT)n and (ATTTC)n stretches. Haplotype studies in unaffected chromosomes suggested that the primary mutational mechanism, leading to the (ATTTC)n insertion, was likely one or more T>C substitutions in an (ATTTT)n pure allele of approximately 200 repeats. Then, the (ATTTC)n expanded in size, originating a deleterious allele in DAB1 that leads to SCA37. This is likely the mutational mechanism in three similar (TTTCA)n insertions responsible for familial myoclonic epilepsy. Because (ATTTT)n tracts are frequent in the human genome, many loci could be at risk for this mutational process.
- A novel H101Q mutation causes PKCgamma loss in spinocerebellar ataxia type 14Publication . Alonso, I; Costa, C; Gomes, A; Ferro, A; Seixas, A; Silva, S; Cruz, V; Coutinho, P; Sequeiros, J; Silveira, ISpinocerebellar ataxia type 14 (SCA14) is an autosomal dominant neurodegenerative disorder, first described in a Japanese family, showing linkage to chromosome 19q13.4-qter. Recently, mutations have been identified in the PRKCG gene in families with SCA14. The PRKCG gene encodes the protein kinase Cgamma (PKCgamma), a member of a serine/threonine kinase family involved in signal transduction important for several cellular processes, including cell proliferation and synaptic transmission. To identify the disease-causing mutation in a large group of ataxia patients, we searched for mutations in the PRKCG gene. We ascertained 366 unrelated patients with spinocerebellar ataxia, either pure or with associated features such as epilepsy, mental retardation, seizures, paraplegia, and tremor. A C-to-G transversion in exon 4, resulting in a histidine-to-glutamine change at codon 101 of the PKCgamma protein, was identified in patients from a family with slowly progressive pure cerebellar ataxia. Functional studies performed in HEK293 cells transfected with normal or mutant construct showed that this mutation affects PKCgamma stability or solubility, verified by time-dependent decreased protein levels in cell culture. In conclusion, the H101Q mutation causes slowly progressive uncomplicated ataxia by interfering with PKCgamma stability or solubility, which consequently may cause in either case a decrease in the overall PKCgamma-dependent phosphorylation.
- Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus.Publication . Silveira, I; Miranda, C; Guimarães, L; Moreira, MC; Alonso, I; Mendonça, P; Ferro, A; Pinto-Basto, J; Coelho, J; Ferreirinha, F; Poirier, J; Parreira, E, et al.BACKGROUND: Ten neurodegenerative disorders characterized by spinocerebellar ataxia (SCA) are known to be caused by trinucleotide repeat (TNR) expansions. However, in some instances the molecular diagnosis is considered indeterminate because of the overlap between normal and affected allele ranges. In addition, the mechanism that generates expanded alleles is not completely understood. OBJECTIVE: To examine the clinical and molecular characteristics of a large group of Portuguese and Brazilian families with ataxia to improve knowledge of the molecular diagnosis of SCA. PATIENTS AND METHODS: We have (1) assessed repeat sizes at all known TNR loci implicated in SCA; (2) determined frequency distributions of normal alleles and expansions; and (3) looked at genotype-phenotype correlations in 202 unrelated Portuguese and Brazilian patients with SCA. Molecular analysis of TNR expansions was performed using polymerase chain reaction amplification. RESULTS: Patients from 110 unrelated families with SCA showed TNR expansions at 1 of the loci studied. Dominantly transmitted cases had (CAG)(n) expansions at the Machado-Joseph disease gene (MJD1) (63%), at SCA2 (3%), the gene for dentatorubropallidoluysian atrophy (DRPLA) (2%), SCA6 (1%), or SCA7 (1%) loci, or (CTG)(n) expansions at the SCA8 (2%) gene, whereas (GAA)(n) expansions in the Freidreich ataxia gene (FRDA) were found in 64% of families with recessive ataxia. Isolated patients also had TNR expansions at the MJD1 (6%), SCA8 (6%), or FRDA (8%) genes; in addition, an expanded allele at the TATA-binding protein gene (TBP), with 43 CAGs, was present in a patient with ataxia and mental deterioration. Associations between frequencies of SCA2 and SCA6 and a frequency of large normal alleles were found in Portuguese and Brazilian individuals, respectively. Interestingly, no association between the frequencies of DRPLA and large normal alleles was found in the Portuguese group. CONCLUSIONS: Our results show that (1) a significant number of isolated cases of ataxia are due to TNR expansions; (2) expanded DRPLA alleles in Portuguese families may have evolved from an ancestral haplotype; and (3) small (CAG)(n) expansions at the TBP gene may cause SCA17.